Sensitivity theorems in integer linear programming
نویسندگان
چکیده
We consider integer linear programming problems with a fixed coefficient matrix and varying objective function and right-hand-side vector. Among our results, we show that, for any optimal solution to a linear program max{wx: Ax <~ b}, the distance to the nearest optimal solution to the corresponding integer program is at most the dimension of the problem multiplied by the largest subdeterminant of the integral matrix A. Using this, we strengthen several integer programming 'proximity' results of Blair and Jeroslow; Graver; and Wolsey. We also show that the Chv~ital rank of a polyhedron {x: Ax ~ b} can be bounded above by a function of the matrix A, independent of the vector b, a result which, as Blair observed, is equivalent to Blair and Jeroslow's theorem that 'each integer programming value function is a Gomory function.'
منابع مشابه
A Mixed Integer Linear Programming Model for the Design of Remanufacturing Closed–loop Supply Chain Network
Closed-loop supply chain network design is a critical issue due to its impact on both economic and environmental performances of the supply chain. In this paper, we address the problem of designing a multi-echelon, multi-product and capacitated closed-loop supply chain network. First, a mixed-integer linear programming formulation is developed to maximize the total profit. The main contribution...
متن کاملAn L1-norm method for generating all of efficient solutions of multi-objective integer linear programming problem
This paper extends the proposed method by Jahanshahloo et al. (2004) (a method for generating all the efficient solutions of a 0–1 multi-objective linear programming problem, Asia-Pacific Journal of Operational Research). This paper considers the recession direction for a multi-objective integer linear programming (MOILP) problem and presents necessary and sufficient conditions to have unbounde...
متن کاملRESOLUTION METHOD FOR MIXED INTEGER LINEAR MULTIPLICATIVE-LINEAR BILEVEL PROBLEMS BASED ON DECOMPOSITION TECHNIQUE
In this paper, we propose an algorithm base on decomposition technique for solvingthe mixed integer linear multiplicative-linear bilevel problems. In actuality, this al-gorithm is an application of the algorithm given by G. K. Saharidis et al for casethat the rst level objective function is linear multiplicative. We use properties ofquasi-concave of bilevel programming problems and decompose th...
متن کاملStochastic Integer Programming: Limit Theorems and Confidence Intervals
We consider empirical approximations (sample average approximations) of two-stage stochastic mixed-integer linear programs and derive central limit theorems for the objectives and optimal values. The limit theorems are based on empirical process theory and the functional delta method. We also show how these limit theorems can be used to derive confidence intervals for optimal values via resampl...
متن کاملA generalized implicit enumeration algorithm for a class of integer nonlinear programming problems
Presented here is a generalization of the implicit enumeration algorithm that can be applied when the objec-tive function is being maximized and can be rewritten as the difference of two non-decreasing functions. Also developed is a computational algorithm, named linear speedup, to use whatever explicit linear constraints are present to speedup the search for a solution. The method is easy to u...
متن کاملA Non-linear Integer Bi-level Programming Model for Competitive Facility Location of Distribution Centers
The facility location problem is a strategic decision-making for a supply chain, which determines the profitability and sustainability of its components. This paper deals with a scenario where two supply chains, consisting of a producer, a number of distribution centers and several retailers provided with similar products, compete to maintain their market shares by opening new distribution cent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 34 شماره
صفحات -
تاریخ انتشار 1986